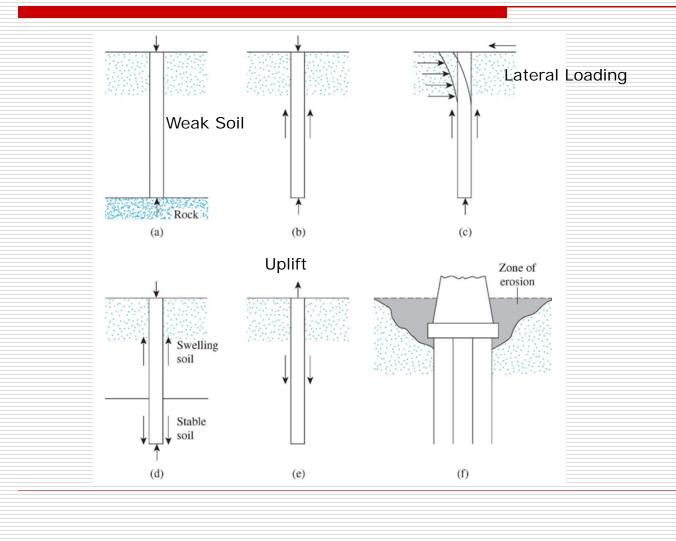

Principles of Foundation Engineering

Braja M. Das

Chapter 11 Pile Foundations

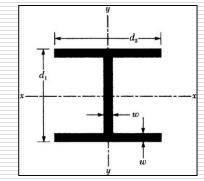
T.

Pile Driving Through The Ages


Pile Driving in Thailand

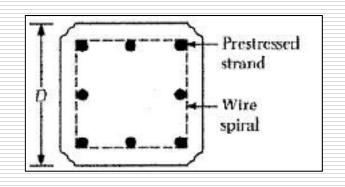
Why Piles?

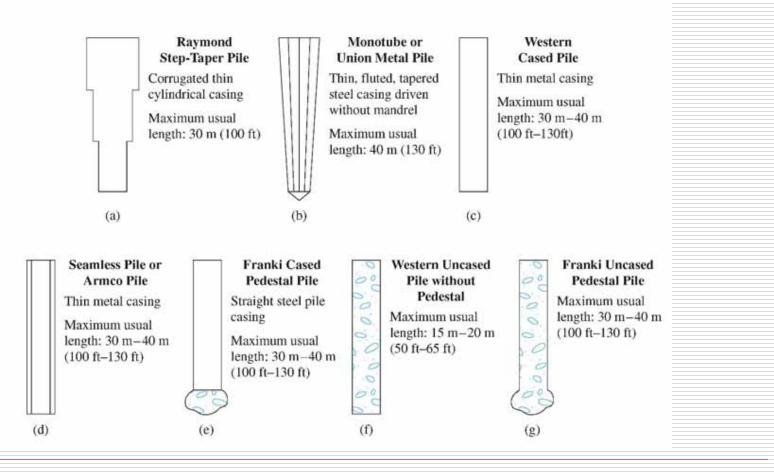
- Soils are insufficient in strength or compressibility characteristics to support shallow spread foundations.
- Structural loads are too high to be supported by reasonably size footings.
- Uplift forces are too high to be resisted by shallow foundations
- Lateral loads are too high to be resisted by shallow foundations

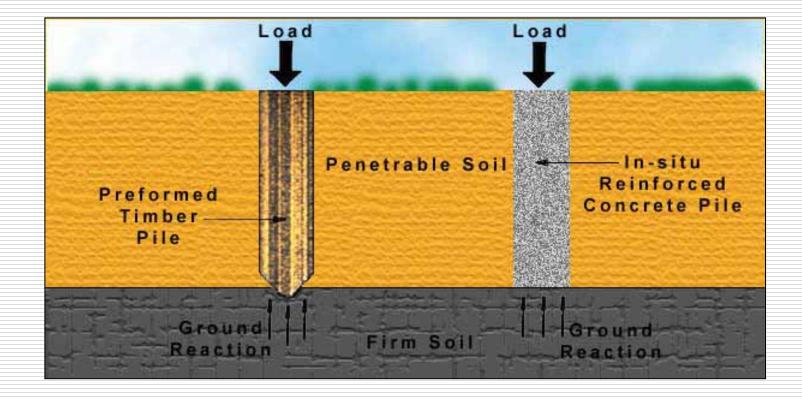

Conditions that require the use of pile foundations

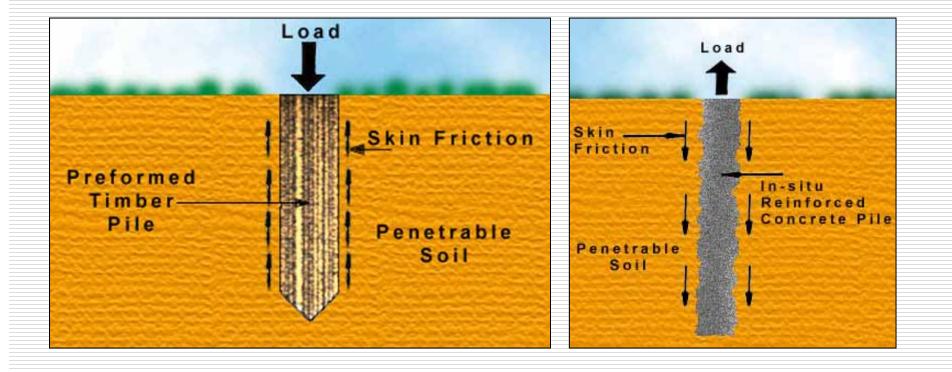
Typical Pile Types

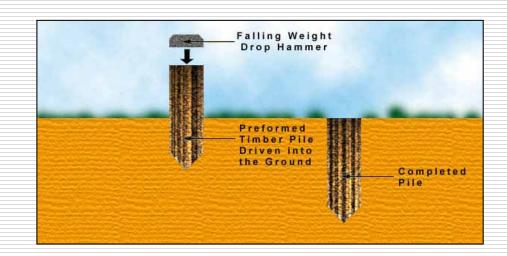
Steel H-piles

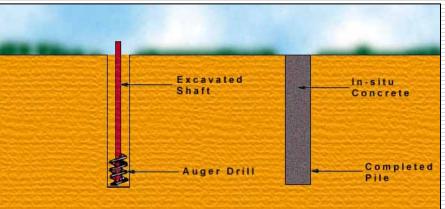

Prestressed Concrete Piles



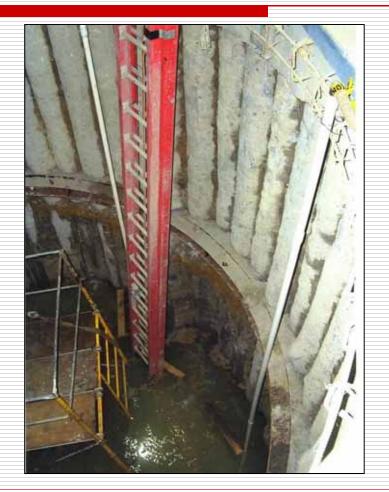



Cast-in-place concrete piles

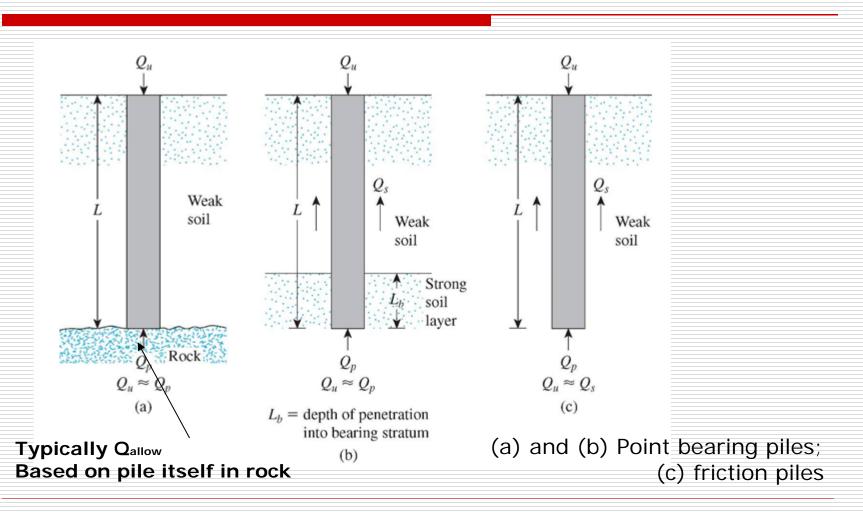

End Bearing Piles

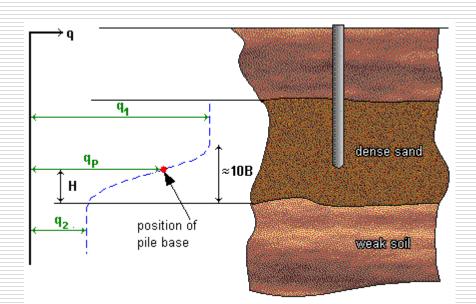


Friction Piles

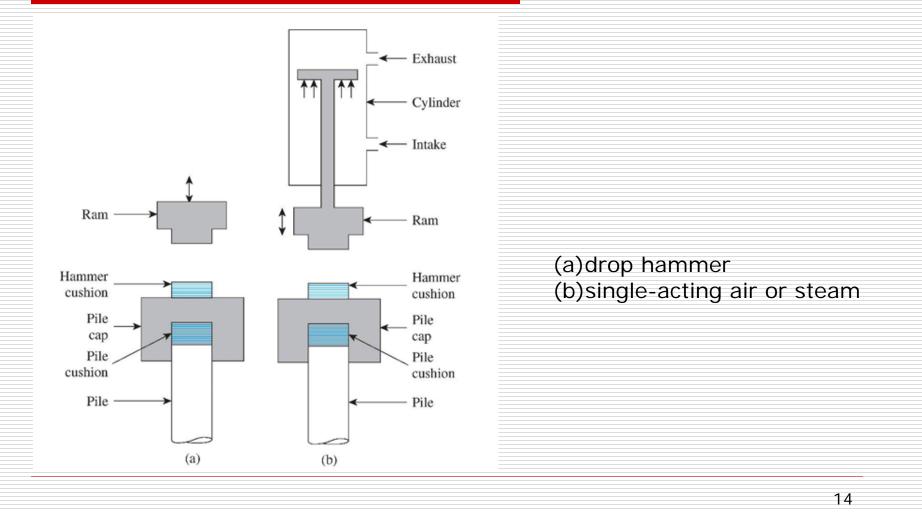


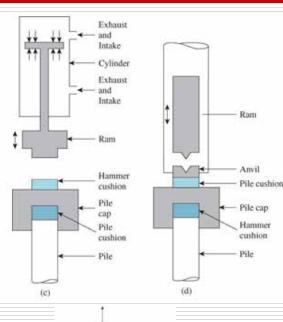
Displacement Versus Replacement




Tangent Wall Using Augercast

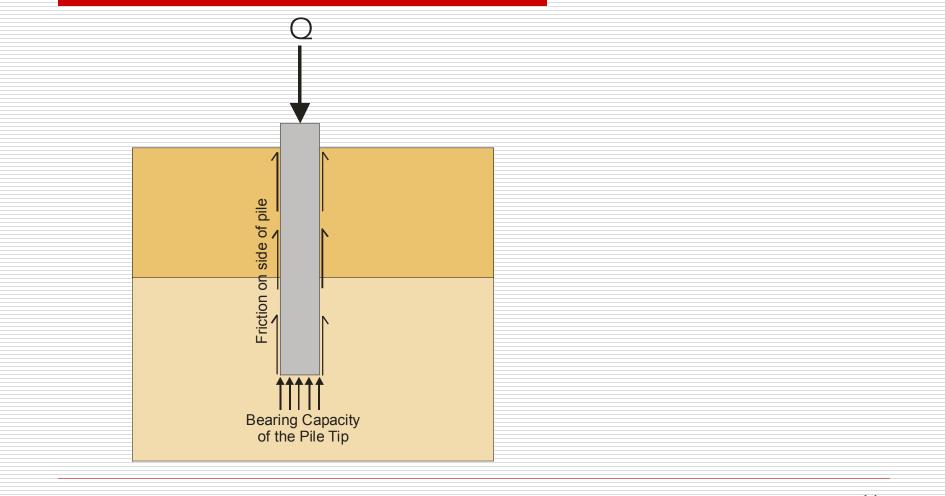
Point Bearing & Friction Piles


Weak Under Dense

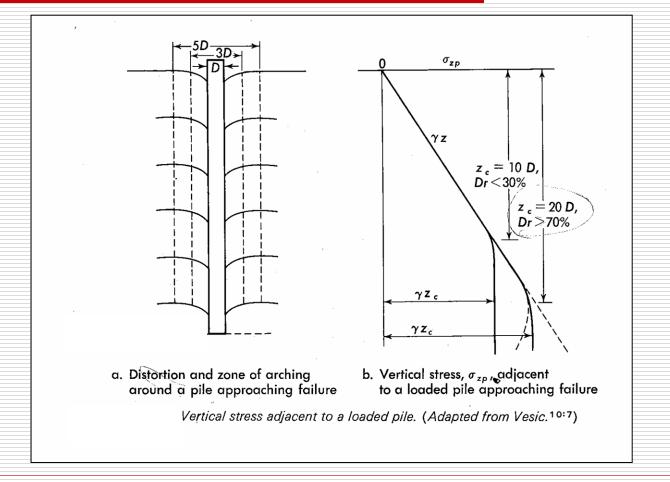

Group Settlement Issues

The base resistance at the pile toe is $q_p = q_2 + (q_1 - q_2)H / 10B$ **but** $< q_1$ where B is the diameter of the pile, H is the thickness between the base of the pile and the top of the weaker layer, q_2 is the ultimate base resistance in the weak layer, q_1 is the ultimate base resistance in the strong layer.

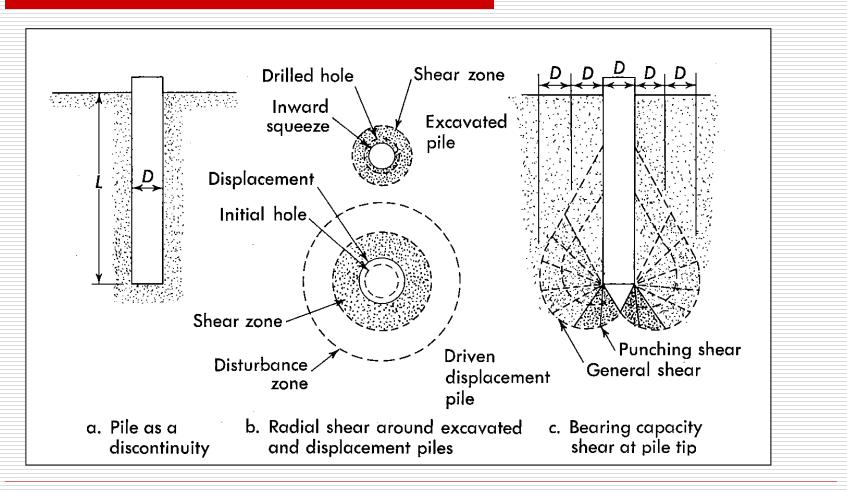
Pile-driving equipment

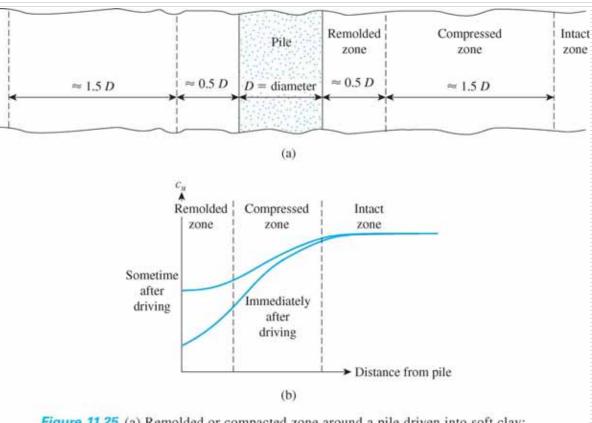


Pile-driving equipment

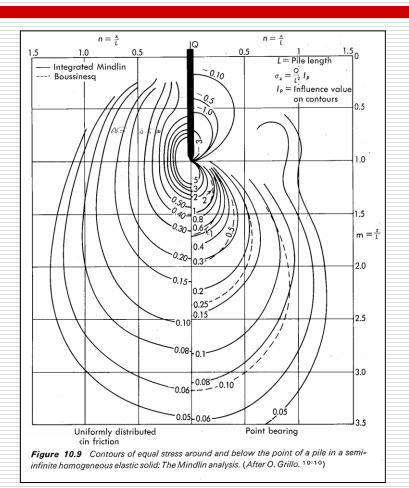


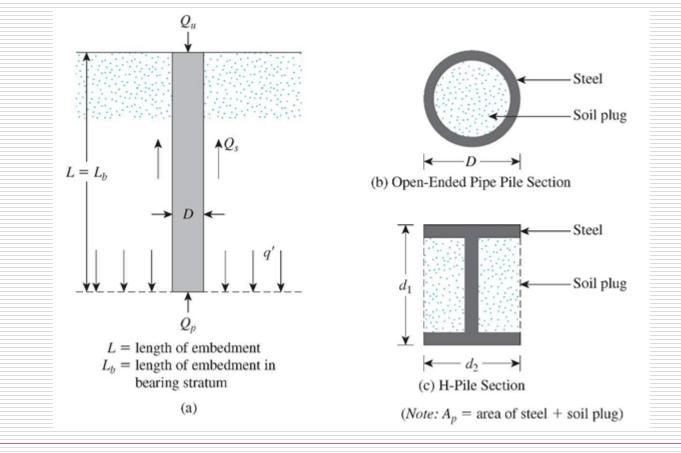
(c) double-acting and differential air or steam hammer
(d) diesel hammer
(e) vibratory pile driver


Pile Capacity Components

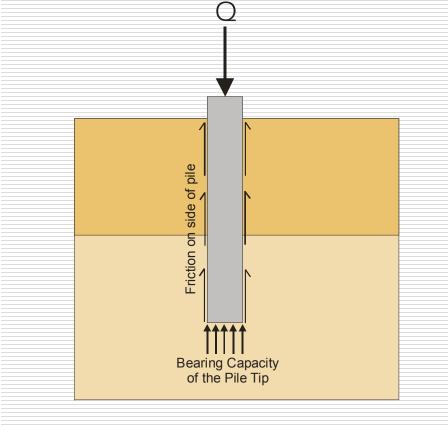

Stress Adjacent to Pile

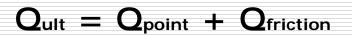
Pile Behavior


Zones Around a Driven Pile


Figure 11.25 (a) Remolded or compacted zone around a pile driven into soft clay; (b) Nature of variation of undrained shear strength (c_u) with time around a pile driven into soft clay

19 of 47


Stresses Around Pile



Ultimate load-carrying capacity of a pile

Pile Capacity Design

Many Methods

- As shown in the textbook, there are many methods for determining compressive and tensile pile capacity.
- Many of them are soil specific either all clay or all sand. Rarely do you have that situations (off shore platforms)
- Many methods are testing specific CPT, CPTu, SPT, laboratory test results, correlations with field testing, etc.
- We are going to limit the number of methods covered.
- One method Sower's Method is not in the book, but allows layered soils with traditional c-φ soil types.

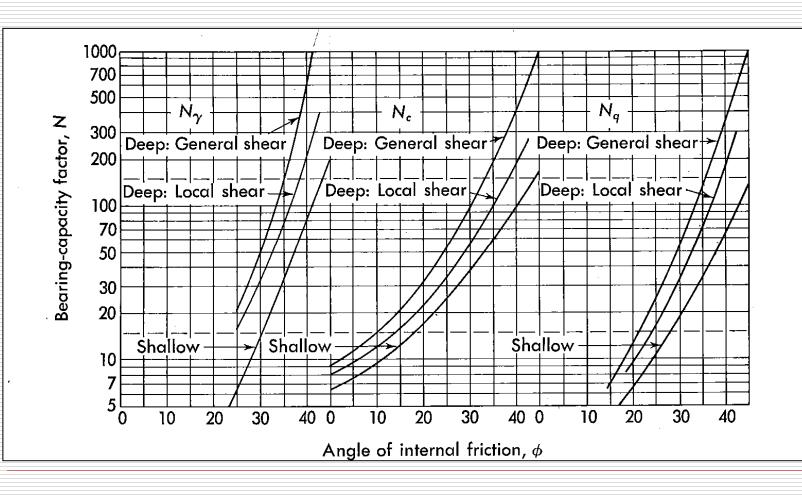
Point Resistance - Sowers

$$\mathbf{q}_{u} = \mathbf{q}_{P} = \mathbf{c}' \cdot \mathbf{N}_{c}^{*} + \mathbf{q} \cdot \mathbf{N}_{q}^{*} + (\gamma \cdot \mathbf{B})/2 \cdot \mathbf{N}_{\gamma}^{*}$$

 N_c^* = cohesion bearing capacity factor for piles N_q^* = embedment bearing capacity factor for piles N_{γ}^* = pile diameter bearing capacity factor for piles

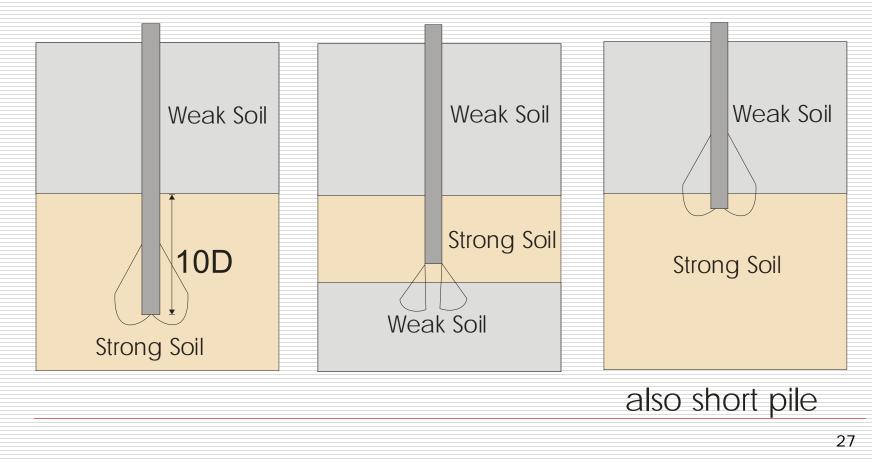
$$\mathbf{Q}_{\mathrm{p}} = \mathbf{q}_{\mathrm{p}} * \mathbf{A}_{\mathrm{p}}$$

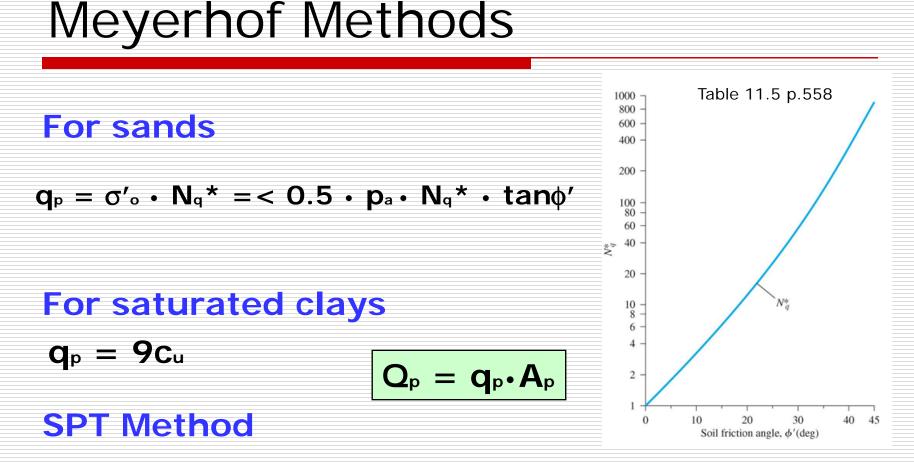
Limiting Values for Overburden


Use lower of these values

tan $\phi \cdot Nq^*$ (kips/sq.ft.) \leftarrow Typically lowest

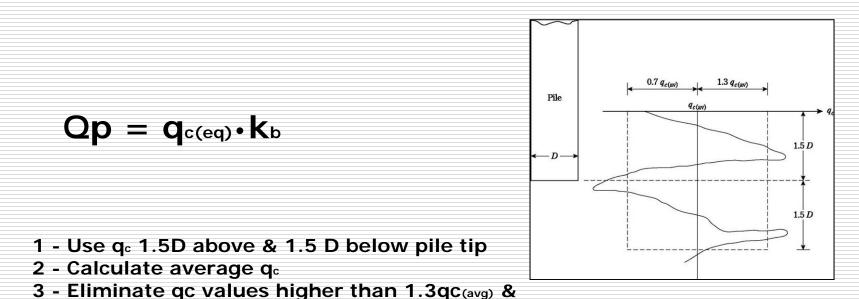
 $\sigma'{}_{^{o}}\bullet Nq^{*}$


 $\sigma'{\rm crit}~\bullet Nq^*$


Sowers Pile Capacity Factors

General, Local, or Shallow?

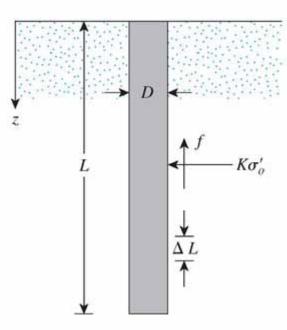
General Shear Deep Local Shear Shallow Shear



 $q_p = 0.4p_a(N1)_{60} L/D = < 4p_a(N1)_{60}$

where pa is atmospheric pressure – 1 tsf

CPT Method


- 3 Eliminate qc values higher than 1.3qc_{(avg} values that are lower than 0.7 q_{c(avg)}
- 4 Recalculate qc(avg)

k_b = 0.6 for clays and silts = 0.375 for sands and gravels

Frictional Resistance

$Qs = \Sigma(p \cdot \Delta L \cdot f)$

where p = perimeter of the pile $\Delta L = incremental pile length over$ which p and f are taken f = unit friction resistance

Sowers Equations

Frictional Capacity

 $f = c' + \sigma'_{h} \cdot tan \phi'$ Augercast Piles or Drilled Shafts or $f = c_a + \sigma'_{h} \cdot tan \delta$ Timber, Steel and Concrete Piles

 $c_a = 0.9c'$ when c' < 1 ksf $c_a = 0.9+0.3(c'-1)$ when c' > 1 ksf

 $\sigma'_h = K_s \cdot \sigma'_o$ with $\sigma'_o < = \gamma_{sat} \cdot Z_{crit}$ 10 to 20 D

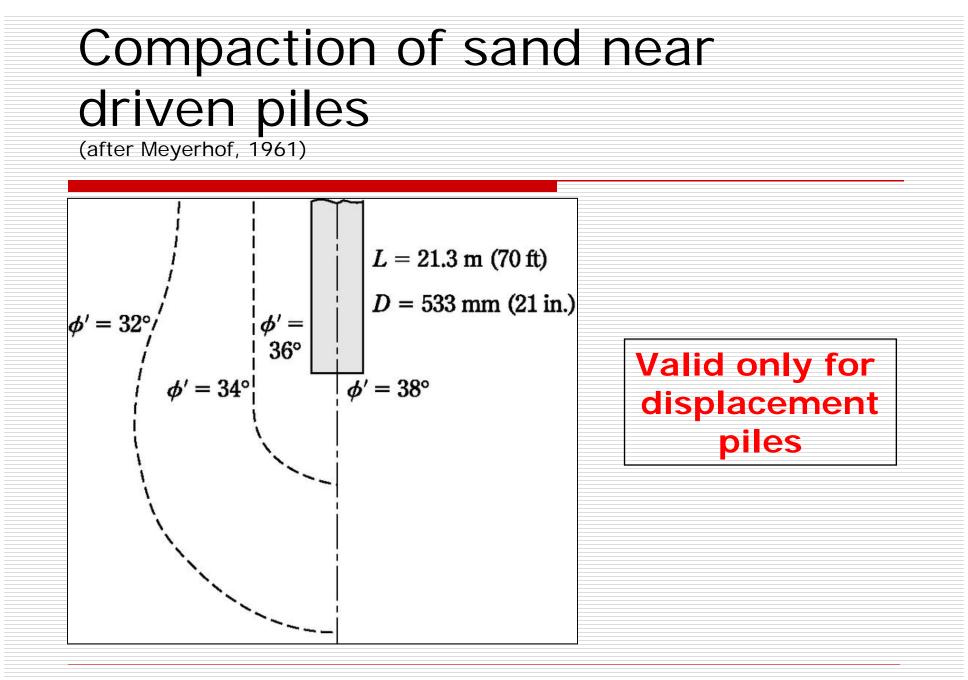
Sowers Frictional Factors

PRESSURI	IENT OF LATERA E IN COHESIONL INT TO PILE AT F	ESS SOILS	COEFFICIENT OF FRICTION, COHESIONLESS SOILS AGAINST PILES						
Soil	Displacement Condition Ks		Material	Coefficient of Friction tan δ	δ (deg)				
Loose Sand	Jetted Pile	0.5 to 0.75	Wood	0.4	22				
Dr<30%	Drilled Pile	0.75 to 1.5	Rough Concrete Cast Against Soil	$ an\phi$	φ				
	Driven Pile	2 to 3	Smooth Formed Concrete	0.3 to 0.4	17				
			Clean Steel	0.2	11				
			Rusted Steel	0.4	22				
Dense Sand Dr>70%	Jetted Pile Drilled Pile Driven Pile	0.5 to 1 1 to 2 3 to 5	Corrugated Metal	tan φ	φ				

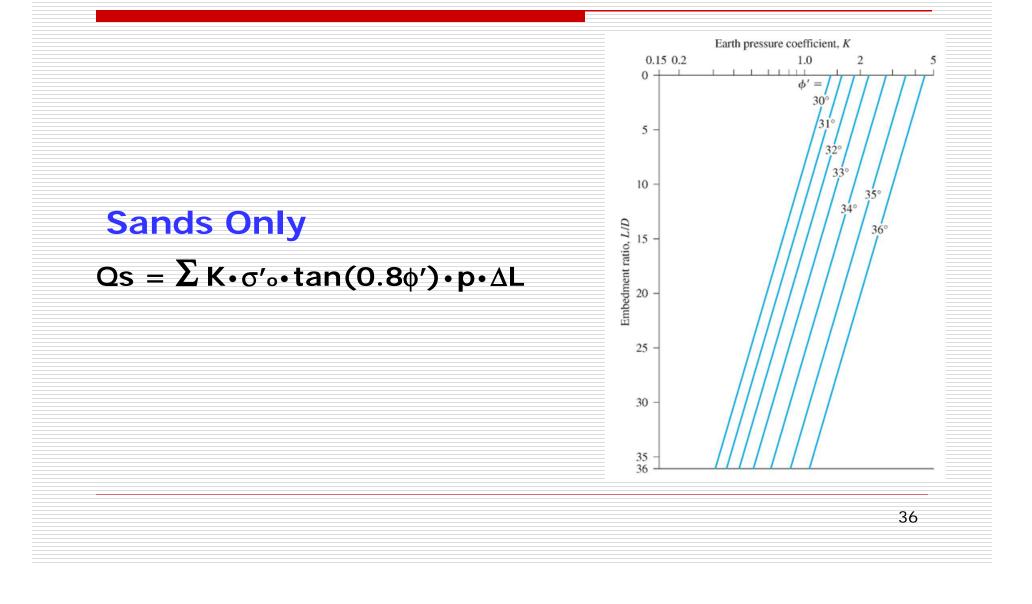
Sowers Method

	TE CE INTE	0.000	0.11	DH E INFORMATION												
PRO	JECT INF	PILE INFORMATION								BORING INFORMATION						
Draig at Name		Dia Tana								Desire						
Project Name Project #		Pile Type:								Boring : Critical Depth : Pile D						
Project #			Pile Shape:								Groundwater Depth : Fie D					
bloulations By		Installation Method : Top Dimension: Inches								P'critical :		ksf				
alculations By Date		Bottom Dimension: Inches								F Childan .						
Date	·									SAFETY FACTOR						
		Pile Length: Feet								SAFETY FACTOR						
Checked By	Skin Friction - tan δ:															
ate Checked	-	Tip Area : Square Feet								Safety Factor :						
	Average Pile Dimension : Inches															
		-				CAP.		ALCULAT			1	•		-		
		P'o OR Total Pile						Skin								
STRATA DEP				Ks	Zavg.	P'o	P'crit.	Tan ¢ or	Shear	Area	Friction		Downdrag	Remarks		
Тор	Bottom	(ksf)			(feet)	(ksf)	(ksf)	Tan δ	(ksf)	(Sq. Ft.)	(kips)	Yes	Kips			
	-															
-																
	-															
								-								
END BEARING	C & PHI =												Total Downdrag			
						Skin Friction	n (less downd	rag)			kips					
											tons					
BEARING CAPACITY FACTORS								End Bearing								
		General	Local	Shallow					Local			tons				
	Factor	Shear	Shear	Shear								tons				
	Ng								Shallow			tons				
	Nc												% Friction	% End Bearing		
	Nq						Total Pile	Capacity - L	ocal			tons				
								Capacity - G				tons				
								Capacity - S				tons				
Notes:							Allowable Pile Capacity - Local					tons				
Cohesion values automatically reduced by 33% in drilled piles						Allowable Pile Capacity - General					tons					
Uplift = Full skin friction / F.S. excluding downdrag						Allowable Pile Capacity - Shallow Allowable Uplift Capacity					tons					
							Allowable	upini Capac	ity			tons				

$q_{P} = c' \bullet N_{c}^{*} + q \bullet N_{q}^{*} + q \bullet D \bullet N_{\gamma}^{*}$


Remember limiting factors for q•Nq

Note About Pile Weight


Pile weight should be subtracted from Q_u especially for very large piles.

Pile weight should be added to uplift capacity.

34 of 47

Lateral Earth Pressure Method

Meyerhof-SPT Method

High Displacement Piles

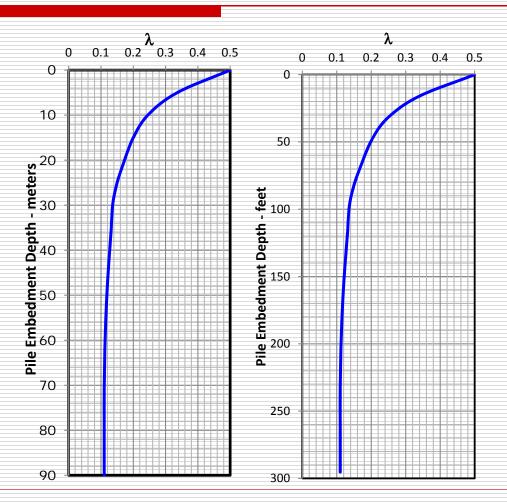
 $f_{av} = 0.02 p_a (N_1)_{60}$

where $p_a = atmospheric pressure = 1 tsf$

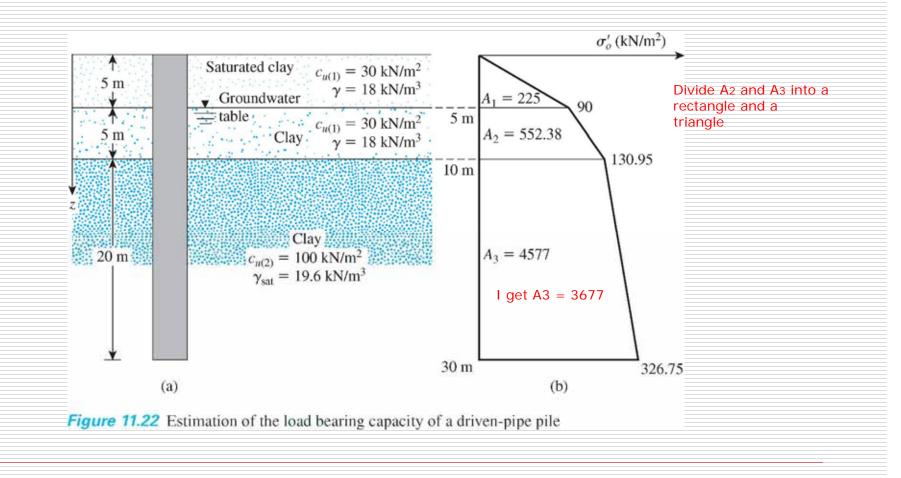
Low Displacement Piles

 $f_{av} = 0.01 p_a (N_1)_{60}$

 $Qs = \sum f_{av} \cdot p \cdot \Delta L$


λ method - Clays

 $f_{av} = \lambda (\overline{\sigma'}_{o} + 2C_{u})$


Table 11.9 Page 576

 $Q_s = f_{av} \cdot p \cdot L$

Drilling Platforms

λ Method Example

39 of 47

λ Example Continued

$\frac{c_u}{p_s}$ ≤ 0.1 0.2 0.3 0.4	α 1.00 0.92 0.82
0.2 0.3	0.92
0.3	
	0.82
	0.74
	0.62
	0.54
	0.48
1.2	0.42
1.4	0.40
1.6	0.38
1.8	0.36
	0.35
	0.34
2.8	0.34
Note: $p_a = a$	tmospheric pressure
	² or 2000 lb/ft ²
	0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.8 Note: $p_a = a$

λ Example Continued

(1) From Eq. (11.55),

$$Q_i = \sum \alpha c_u p \Delta L$$

[Note: $p = \pi(0.406) = 1.275$ m] Now the following table can be prepared.

Depth (m)	ΔL (m)	c, (kN/m²)	α (Table 11.10)	ac _u p∆L (kN)
0-5	5	30	0.82	156.83
5-10	5	30	0.82	156.83
10-30	20	100	0.48	1224.0
10-30	20	100	Q, -	1538

(2) From Eq. 11.51, $f_{uv} = \lambda (\overline{\sigma}'_v + 2c_u)$. Now, the average value of c_u is

$$\frac{c_{u(1)}(10) + c_{u(2)}(20)}{30} = \frac{(30)(10) + (100)(20)}{30} = 76.7 \text{ kN/m}^2$$

To obtain the average value of $\overline{\sigma}_{e}$, the diagram for vertical effective stress variation with depth is plotted in Figure 11.22b. From Eq. (11.52),

 $\overline{\sigma}'_{*} = \frac{A_1 + A_2 + A_3}{L} = \frac{225 + 552.38 + \frac{3677}{4577}}{30} = \frac{148.48}{178.48} \text{ kN/m}^2$

From Table 11.9, the magnitude of λ is 0.136. So

$$f_{ss} = 0.136[178.48 + (2)(76.7)] = 45.14 \text{ kN/m}^2$$

Hence,

 $Q_i = pLf_{**} = \pi(0.406)(30)(45.14) = 1727 \text{ kN}$

41 of 47

Rock

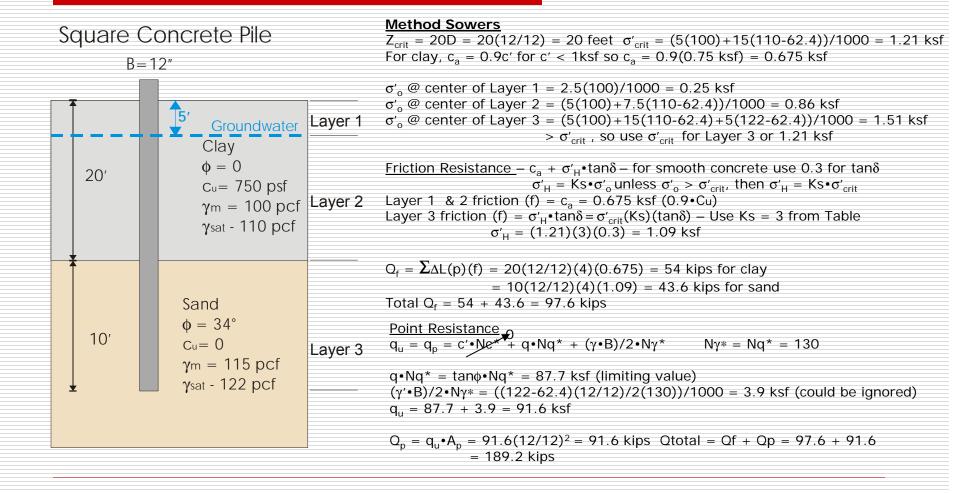
$$\mathbf{q}_{\mathrm{p}} = \mathbf{q}_{\mathrm{u}}(\mathbf{N}_{\mathrm{\phi}} + \mathbf{1})$$

where $N_{\phi} = \tan^2(45 + \phi'/2)$ qu = unconfined compressivestrength of rock

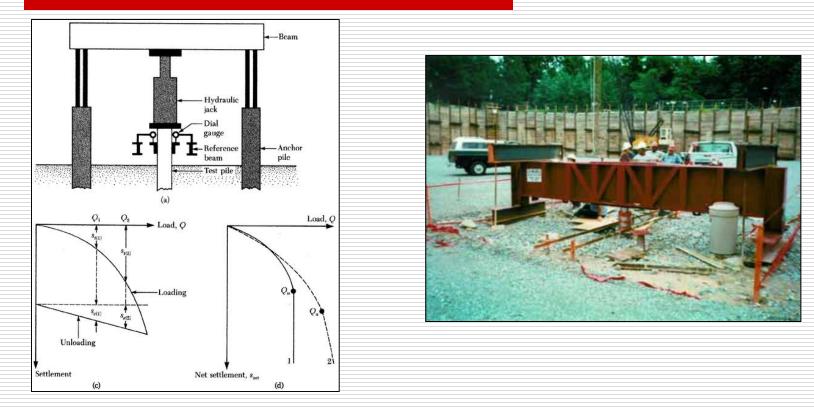
 $q_{u(design)} = q_{u(lab)}/5$

 $\mathbf{Q}_{\mathrm{p}} = \mathbf{q}_{\mathrm{p}} \cdot \mathbf{A}_{\mathrm{p}}$

ROCK QUALITY[‡]

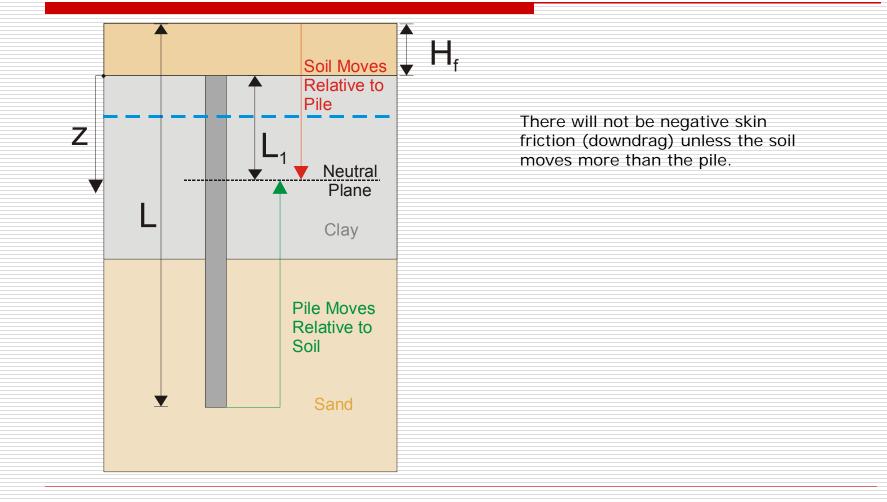

RQD (%)	DIAGNOSTIC DESCRIPTION	ROCK PARAMETER FIELD/LAB RATIO
0 - 25 25 - 50 50 - 75 75 - 90	Very Poor Poor Fair Good	0.15 0.20 0.25 0.30 to 0.70
90 - 100	Excellent	0.70 to 1.00

Rock Strength


Type of rock	q _u		
	MN/m ²	lb/in ²	
Sandstone	70-140	10,000-20,000	
Limestone	105 - 210	15,000-30,000	
Shale	35-70	5000-10,000	
Granite	140-210	20,000-30,000	
Marble	60-70	8500-10,000	
Type of rock	Angle of fr	iction, ϕ' (deg)	
Sandstone	27-45		
Limestone	30-40		
Shale	10-20		
Granite	40-50		
Marble	25-30		

43 of 47

Problem



Pile Load Testing

- (a) Schematic diagram of pile load test arrangement
- (c) plot of load against total settlement
- (d) plot of load against net settlement

Negative skin friction (Downdrag)

Negative skin friction

 $L_{1} = \frac{\left(L - H_{f}\right)}{L_{1}} \left[\frac{\left(L - H_{f}\right)}{2} + \frac{\left(\gamma_{f} \cdot H_{f}\right)}{\gamma_{f}}\right] - \frac{\left(2 \cdot \gamma_{f} \cdot H_{f}\right)}{\gamma_{f}}$

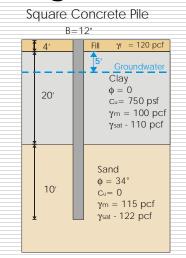
Solver in Excel

 $\mathbf{Q}_{d} = \sum_{T=0}^{L_{1}} (\mathbf{p} \cdot \Delta \mathbf{L} \cdot \mathbf{f})$

where p = perimeter of the pile $\Delta L = incremental pile length over$ which p and f are taken<math>f = unit friction resistance $H_f = height of fill$ $\gamma f = unit weight of fill$ $\gamma' = bouyany unit weight$ $L_1 - depth to neutral point$

Consolidation settlement of group piles

Group Efficiency


is 100% when

Homework

CE 430 & 530

- 11.1a
- 11.8
- Calculate pile capacity shown below with
 - 4 feet of sand fill creating <u>negative skin friction</u> for problem in figure below using Sowers.

